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Anomalous diffusion with absorption: Exact time-dependent solutions
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Recently, analytical solutions of a nonlinear Fokker-Planck equation describing anomalous diffusion with an
external linear force were found using a nonextensive thermostatistical Ansatz. We have extended these
solutions to the case when an homogeneous absorption process is also present. Some peculiar aspects of the
interrelation between the deterministic force, the nonlinear diffusion, and the absorption process are discussed.

PACS numbeps): 47.20.Ky, 05.40-a, 47.20.Hw

I. INTRODUCTION D((D):(D(V/M)—l‘ 3

The ubiquity of the anomalous diffusion phenomenon inThere are several real situations where this power-law depen-
nature has attracted the interest of researchers from both tlidence of the diffusivity is found. It occurs in the flow of
theoretical and experimental point of view. Anomalous dif- gases through porous mediel =2 [12]), the flow of water
fusion has been found in transport of fluids in porous median unsaturated soilsif{ =5 [13]), the simultaneous diffu-
and surface growthil], in NMR relaxometry of liquids in  sion and adsorption in porous samples where the adsorption
porous glassef2], and in a two-dimensional fluid floW3],  isotherm is of power-law typgl4] (v/u=1 for Freundlich
to name just a few among the large variety of physical phetype of adsorption isotherfi4,15)). Clearly, in those cases,
nomena where it is present. A related aspect is the case dfe diffusivity vanishegdiverges for ®=0 whenv/u>1
density dependent diffusivities as found in some biological(v/u<1). It is worth remembering that E¢l) corresponds
systemg4], in polymers[5], and hydrogen diffusion in met- to the so called “porous media equation” whan=1[9,16].
als[6] (see alsd7]). There are a large number of situations where the interest of

Some recent papers have investigated a classolinear  describing anomalous diffusion plus absorption are of rel-
generalizations of diffusion and Fokker-Planck equationsevance. Notably, it is those related to the diffusion of some
[1,8-10, as a model of correlated anomalous diffusion.(reactive substance in a gaseous phase through a porous
Some of those studies were based in a nonextensive thermgedia or a membrane, that react and can be adsorbed in sites
dynamical formalism[11]. Particularly in Ref.[10] exact inside the porg17].
solutions for the nonlinear Fokker-Planck equation subject to  Our interest here is to solve the same Hg.but including
a linear force have been found. Here we want to show howow terms that describe some kind of absorption process. A
these solutions can be extended to the case where an absogeneral form of such an equation is
tion process is also present.

We start recalling the “full” anomalous diffusion equa- d u d u
tion or “nonlinear” Fokker-Planck equation solved in Ref. SPOGD == — AFCO[P(X,1)]#}
[10],
7 :
9 +DoalP(x D] —alp(x,)]*,  (4)

1% d
i [POGDT= = —{FOOLP(D1#H+D 5 [px,1) "

(1) where «a plays the role of an absorption ratend becomes
the usual one fo'=w). The presence of reaction terms
When F(x)=0, Eq. (1) can be interpreted as a diffusion |ike the one in Eq(4) (with «#0 andw’#0) is not at all
equation for®(x,t) =[p(x,t)]#, where the diffusivity de- unexpected considering the large amount of work on the

pends ond, problematic of diffusion-limited reactions. Among the diver-
5 sity of systems that have been studied we only recall here the
9 o= &—[D(CD)(I)] (2  so-called one species coagulation, thatAs: A—0 or mA
at ax? ' —IA (with m>1), that have been associated, among others,

with catalytic processes in regular, heterogeneous, or disor-
dered system§l8]. The reaction term may account, in the

*Electronic address: gdrazer@tron.fi.uba.ar caseu=pu', for an irreversible first-order reaction of the
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« is the reciprocal of the tracer's mean lifetifi9], as well ~ =0), for the case of a linear forcevhen k,#0) such a

as in heat flow involving heat production at a rate that is areduction is not possible to make in a simple way and we
linear function of the temperatur0]. Finally, in solute  will need a more general treatment.

transport through adsorbent samples the adsorption rate, at The linear force situation, tightly related to the so called
small solute concentration, is usually proportional to the conUhlenbeck-Ornstein procesk;=0;k,#0), is treated in

centration in solution and Ed@4) applies. Sec. Ill, while in Sec. IV we discuss the most general case,
In [10] it has been shown tha,(x,t), the solution of Eq.  that is, whenu# u'. In the last section we make some final
(1), for a linear forceF(x) has the form remarks.
_ _ _ 21/(1-q)
b t)= {1-B((1 q)z[>z )XM(t)] 1 5) Il. SOLUTION FOR A CONSTANT FORCE
1 t 1
q

As indicated above, here we consider the case of a con-
whereq=1+ u— v, B(t) depends on the width of the dis- stant force, that iF(x)=k;. Equation(9) can be further
tribution, x\, (t) is the average of the coordinate, afy(t) is  reduced making the following change of variablés x
a normalization factor. All of them depend on the diffusion —k;t, that results in
parameteD as well as onu,» and the forcesee[10] for

detaily. J . ; (it 2 . ,

For completeness, as well as for reference, we write Eq. E[p(fi)] =De &—gz[P(g,t)] . (10
(1) without the “drift” F(x) as we will refer to the solutions
of such an equation in the following sections: Now we change the time variable according to

9 2
e - P v “ “ J . d
 PODIT =D Galp DT © BED=PEZ)= =202, (1D

According to the results from Rgf10] we can write that the

i (0) H H t _a M

sqlutlon Py (x,t) of Eqg. (6) has the form given in Eq5), z(t)=J JRACE l1-e =0, 12
with 0 Y

Xm()=Xo, with y=—a(u—v)/u, and obtain the following equation

20 v+ p valid for all t=0

Zq(t)=(7(v+,u,)77Dt> , . 2
R e ) — v
@ 72 PED“=D S5[p(£2)]" (13

2v —(2ulv+p)
B(t)= 77(—(1/+ ,LL)’]TDt)
Iz Hence, if p{’(x,t) is the solution of Eq(6), the solution

where we have used the reIatiBnQO)Zq(O)ZM= r, that shall with F(x) =k, plus ahsorption results to be

be fulfilled if we want to have &-like initial condition. o
In the present work we intend to analyze the specific case pa(x. =€ =P (x—kit,z(1)). (14)
of a linear drift, namelyF(x) =k, —Kk,x. This case, where
the potential is harmoni€a typical approximatiop is the It is easy to check that this solution has the right limits for
simple nontrivial one where analytic solutions can be ob-a—0 and fora>0 andu=v=1, i.e., the standard Fokker-
tained just by means of changing the variables to suitabl®lanck equatioriplus absorption
ones, namely, a simple extension of the well known Boltz- The new variablez(t) plays the role of areffective time
mann transformatioh21]. for the dispersion process. It exhibits markedly different be-
In Sec. Il we start considering the simple case «'. We  haviors depending on the ratie/v. The caseuw/v>1 (y
analyze first the case of constant external fokcg<0). In  <0) corresponds teuperdiffusivdéransport when there is no
this case we can first reduce Hd) by proposing a solution absorption[10]. When absorption is present thesiperdiffu-
of the form sionis enhanced since the effective timgrows exponen-
R tially as a function of the real time
p(x,t)=e (/Wip(x,t), (8) In the caseu/v<1 (y>0), which leads tesubdiffusion
. for =0, the presence of absorption also plays a key role.
that yields an equation fgs(x,t) given by The effective timez(t) converges to an asymptotic value:
lim__z(t)=z.=1ly. Therefore, the distributiop{’(£,2)

Jd J ~

S [P == — {FC)[P(X,1) ]} evolves toward an asymptotic curpé’)(£,z..). Let us note

that z,, diverges whenevex—0 or u/v—1. In Fig. 1 we

w1 vt - , compare, in theu/v<<1 case, the time evolution of the dis-
+De A PGOT” ®  tributions fora#0 anda=0. We also compare these distri-

butions with the shape of the+0 asymptotic curve. For
Although this reduction to aonlinear Fokker-Planck equa- completeness, we include in Fig. 2 the behaviorzain t,
tion like in Eqg. (1) looks to always be possiblevhen k, also illustrating its dependence qufv. Finally in the case

2
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FIG. 1. Evolution of the dlstrlbutlorp (§ z(t)), as given in
Eq. (14), in the caseu/v=2/3<1. It is shown at timest
=0.2, 2.5, and 5 fowr=0 anda=1 (u=1v=15D=1k;=5(q
=0.5). The dashed line corresponds to the 1 asymptotic distri-
bution shape.

u=v (normal diffusion-absorption for the quantity
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k,>0), whose general solution without absorption was

found in[10]. To start with, we assume that=n'. With the

hint of the change of variables made in the previous section
we propose the following changes, that define the new vari-

ables

p(x,t)=e""p(£,z(1)), (15)

E=xg(t)+1(1), (16)

with w,g(t) andf(t) to be determined. In terms of these new

variables the time and space derivatives becomes

a9
—=—+(Xg t)+f(t))

g +z(t)

(17

d
—g(t) (18

43

Taking into account these results and the form proposed

for the solution[given by Eq.(15)], each separate term of
Eq. (4) becomes

d(x,t)=[p(x,t)]*) the change of variables becomes a

simple time scaling.

As already mentioned, E@4) can be viewed as a classi-

cal diffusion equation fofP(x,t) =[ p(x,t)]*, where the dif-
fusivity depends on®(x,t) through D(®)=Dd"# 1,

Therefore, it becomes clear that the absorption can enhance

(reduce the diffusive transport whenevew/v>1 (ul/v
<1), namely, as absorption proceefisdecreases, yielding
to an increase or not iD(P) according to theu/v ratio.

Jd " .
ZlPxn]= —wue M p(£,2)]#+eWH (xg(t)

)—[p (£&.2)]*

This qualitative description seems to be in complete agree-

ment with the previous quantitative results.

Ill. SOLUTION FOR A LINEAR FORCE CASE

We now consider the case of a linear force, given by
kox (here and in what follows we assume that

F()=k;—

100.0

z(t)
a
o

0.0 L L n L
0.0 10.0 20.0 30.0 40.0

t (arb.units)

50.0

FIG. 2. Time dependence of theffective time Zor several
values ofy. It is apparent thar(t) saturates at a finite value &s
—(z,=1/y) whenevery>0. In the casey=0 the effective time
becomes equal to the real time=t. For y<O0 the effective time
grows exponentially with.

.9 .
+e‘W‘“Z(t)5[p(§,Z)]", (19
J ®
—&{(kl_kzx)[p(xit)] ¥
=ka[ PO, 1) 1% = (kg —kox) — [p(x )]~
=e "rY ko[ p(&,2)]*— (ki —kox)g(t) ag[p(f Z) ]
(20)
2 P .
Dm[p(x,t)]bDgz(t)e‘w”tﬁ—gz[p(éZ)]”- (21

In this way, the equation we obtain fp(£,z) replacing into
Eqg. (4) with F(x)=k;—k,x results (after arranging terms
and multiplying bye"»!)

.9 . -
2(t) —[p(&.2)]*=[wu+ko—allp(¢,2)]*

—[(ky—kox)g(t) +xg(t >+f<t>]

24
2

X[p(£,2)]"+ Dgz(t)ewwvn;_gz

X[p(£,2)]". (22)
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In order to reduce the last equation to one with a form simi-
lar to Eq.(6), we need to cancel the first two terms on the
rhs, and reduce the coefficient of the third one to a constant
To operate with the second term, we shall cancel it for all
values ofx. These conditions yield the following equations: 4, |

O=wu+k,—a, (23 5
0=—kog(t) +g(1), (24 =
01
0=k, g(t)+ (1), (25)
1=g?(t)e" z(t) 1, (26) .
0 LIS
rendering -3 o 3
w=(—k+a)u "t (27 FIG. 3. Evolution of the distributiop{’[ £,z(t)], as given in
Eq. (33), in the caseu/v=2>1. It is shown at time$=0.5, 0.8,
g(t)=Ge, (28 and 1.0 fora=0 and @=5 (u=1,,=0.5D=1k,=0k,=1.0g
=1.5). The dotted lines correspond to the-0 distribution, while
kq the solid lines correspond to the=5 case.
f(t)y=H— Gk—ekzt (29

Gaussian factor behaves “anomalously” as it differs from
2(t)—2(0)=G2{1—e "}y L, (30) the one in the associated Ornstein—UhIenpeck pro@&s
As in the constant-force case, absorption process mark-
with y=[—kKo(u+ v)+ a(v—u)]u L. In the general case, €dly influences the time evolution of dispersion. A straight-
the values of the constants shall be chosen to fulfill soméorward calculation yields the dispersion of the distribution
particular initial condition. Here, to simplify, we choo&  in the present case.e., u=u")
=1, implying that we do not change thescale att=0.

Also, in order to make the change of space variables in such 2\ _ e~ 2kt
; S (x=(x))%)= : (35
a way to have it centered at the potential minimpgn= (x ,3[2 ]
—k1/ky)] we adoptH=0. Finally we choose(0)=0 to -
preserve the time origin. With these values we have Inthe superdiffusive case w{v>1) p[z(t)] Dbe-
comes asymptotically exponential, namelyB[z(t)]
ki) 3 o exp(— 2{[ko(p+v) + a(n—v) ]/ n+v}it). Replacing this
E=x—|e? (3D result in EqQ.(35) we obtain the long time behavior of the
2 dispersion
Z(t):{l_e_’ﬂ}’y_l! (32) <(X_<X>)2>era[(,u,fV)/(/.L+V)]t. (36)

and the solution of Eq4) with F(x) =k; —kx is Therefore, thesuperdiffusiveransport enhanced by absorp-
pq(xlt):e[(sza)/,u,]tp((]O)(g,z). (33) tion y|¢lds an ex_ponentlally_mcr_easmg dispersion even in an
attractive potential. Theubdiffusivecase u/v<<1) presents
This is the final result for the present case=(u'). It is  two different situations. Although in both cases the disper-
trivial to check its validity in some limits, the most obvious Sion decays exponentially, when the absorption rate is small
one is to chooser=0, recovering the solution of Reff10]. [ ¥<0.a<ky(v+u)/(v—u)], absorption is the rate control-
With u=v=1 anda#0 we recover the simple case of dif- ling process for dispersion
fusion in a harmonic potential with absorption. Also, if we 2N = 2al(v— ) (v )]t
consider the casp=v anda#0, it is immediate to obtain (x={x)))=e PR (37)
= I = l
(remember tha.=» givesq=11) In the other case, when the absorption rate is large @),
—Kol2uD[x— (kg Tkp) —xge~ K21 2/(1— e 2Kat) the attractive force becomes rate limiting for dispersion pro-
— a—alut cess
pl(x!t) € 27T/.LD 7k2t 1/2,U~ b
(l e ) <(x—<x>)2>oce‘2k2t. (38)
(34)

In order to compare the influence of the absorption term
This result becomes obvious after making the chang®n the solutions we have found, in Fig. 3 we depict the
p1(x,t)*= ¢(x,t), reducing the problem to an effective one solution given in Eq(33), in the caseu/v>1 (superdiffu-
of diffusion in a harmonic potential with absorption for sion), for a=0 and a#0 at different times. In Fig. 4 we
¢(x,t). Clearly, even though the solution has a Gaussiartompare, in the subdiffusive case, the solution in B9
form (times a decaying exponential texnthe width of the  when absorption is the rate limiting process for dispersion to
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with &= ¢(t)x. Replacing this into Eq41), we obtain the
functions¢(t) and (t) as

" o) =[1+(1—q")(alwt] Va1 (43

e
w
T

PO =[1+(1—q")(af w)t] V2O —0IA=aDT - (44)

PE.2(0)

whereq’=1—u'+ u. Hence, Eq(41) for O (£) reduces to
an ordinary differential equation on the varialgle

o
M)
T

!

v
2u

d2

de?

d ,
01| Q4+ £5;0"=DgpO+O". (49

Once again, the previous results can be interpreted in
terms of ®(x,t). Writing the absorption term as

—(a®** 1, it can be seen that in the cage< u the
FIG. 4. Evolution ofp{’[£,2(1)], as given by Eq(33), in the  absorption process is enhanced dsdecreases with time.
caseu/v=2/3<1. We show it at time4=0.2, 1, and 5 fora This leads to a finite timé.= u/a(uw—p'), whered be-
=05 anda=2.0 (u=1r=15D=1k;=0k;=0.24=0.5). The  comes zero. On the other hand, wheh> . we can obtain
dashed lines correspond to the case 0.5, where the attractive e asymptotic dispersion, even though the ordinary differ-
force becomes dispersion rate limiting. The solid lines corresponcémim equation foi® (&), Eq. (45), is too complicated to be

:)oeg;i.o, where absorption is the rate controlling process for dIS-SO|Ved analytically. However, for theth moment of the dis-

tribution, we obtain
/[f dxp(x,t)

the case when the attractive force controls dispersion. In both
figures the differences between the characteristics of the dif{x2") =
ferent situations are apparent.

f dxx"p(x,t)

IV. GENERAL ABSORPTION TERM =U dxx"e(1)O ((t)X) /U dxe(1)O (#(1)x)
In this section we consider Ed@4), in the general case
w# u'. The following “simple” kinetic equation =¢(t)_2”{f dEEZH(S)}/ [f d§(§)}
P =—alp] @ = #0 ™A, (49
. . <X2n+1>:0, (47)
whose solution is
LT yielding
p(t)={1—-(1—q );t) , (40 (= (X))2)= (x2) = (1) ~2A,~tl(w' ~»Ia-a)]

whereq’ =1— '+ u strongly indicates the replacement of =t —vln = p), (48
the exponential in the change of variables in Edgl) and
(15), by theq’-exponentiafunction defined by Eq40) [23].  Hence, it is clear that, as in the previous cagé € u),
The ordinary exponential function is recovered whgh u/v»<1 corresponds to subdiffusion, whereas the case
—1. If we try this possibility, together with the Ansatz in >1 corresponds to superdiffusive transport.
Eq. (7), it immediately leads to the conditiop=u'. This
result becomes apparent when analyzing @gin terms of V. EFINAL REMARKS
D (x,t)=[p(x,t)]*. The form proposed in Ed8) allows us , ,
to reduce the general equation, eliminating the absorption The Fokker-Planck equation that was generalized to a
term, only when absorption is proportionaldg(x,t). How- ~ nonextensive sc_engr[@] has been fur.ther generalized to in-
ever, the general case wita# ' will have a solution clude the possibility of an absorptlon process. We have
whose scaling properties can be determined. shown that the exa_ct solut_|ons of_Eq4) (a nonllne_ar
To find such scaling behavior it is enough to consider thd-0kker-Planck equation subject to linear forcésund in
simplified situation without external force, that is [10] when @=0, can be extended for the case~0 and
n' = . However, in the general cage # u, we have been
d 92 , only able to obtain the scaling properties of the solution
S PG =D —3[p(x.O]"—alp(x,n)]* . (41)  (whose analytical form we cannot obtainand the
asymptotic behavior of the whole hierarchy of moments.
We consider the following Ansatz Summarizing our results for the nonlinear process of
anomalous diffusion plus absorption, as described by(&gq.
p(x,t)=¢@(1)O (&), (42 we have found that the solutidin) in a constant force field
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and for u/v>1 shows a superdiffusive behavior thateis-
hancedwhen a#0 (y<O0); (i) when y>0 (u/v<1) the
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over, it has been suggestgtD] that even Levy-like anoma-
lous diffusion[24] (that can be discussed by means of linear

concentration reaches an asymptotic constant prdfilefor ~ Fokker-Planck equations with fractional derivativesn be
a linear force andy<0, we find an exponentially increasing included within the present common framework of nonlinear
dispersion for superdiffusioriv) in the linear force case, an Fokker-Planck equations with fractional derivatives.
exponentially decreasing dispersion arises for subdiffusion This work also opens the possibility of analyzing
(v>0), where absorption is the rate controlling process forreaction-diffusion systems on a fractal substratum, by con-
dispersion when absorption rate is snjall<k,(v+u)/(v  sidering the nonlinear Fokker-Planck equation with other
— )], while the attractive force becomes the rate limitingforms of reaction terms. This problem will be the subject of
dispersion process when absorption is large enopgh further work.
k(v )l (v—p)].
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