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Anomalous diffusion with absorption: Exact time-dependent solutions
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Recently, analytical solutions of a nonlinear Fokker-Planck equation describing anomalous diffusion with an
external linear force were found using a nonextensive thermostatistical Ansatz. We have extended these
solutions to the case when an homogeneous absorption process is also present. Some peculiar aspects of the
interrelation between the deterministic force, the nonlinear diffusion, and the absorption process are discussed.

PACS number~s!: 47.20.Ky, 05.40.2a, 47.20.Hw
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I. INTRODUCTION

The ubiquity of the anomalous diffusion phenomenon
nature has attracted the interest of researchers from both
theoretical and experimental point of view. Anomalous d
fusion has been found in transport of fluids in porous me
and surface growth@1#, in NMR relaxometry of liquids in
porous glasses@2#, and in a two-dimensional fluid flow@3#,
to name just a few among the large variety of physical p
nomena where it is present. A related aspect is the cas
density dependent diffusivities as found in some biologi
systems@4#, in polymers@5#, and hydrogen diffusion in met
als @6# ~see also@7#!.

Some recent papers have investigated a class ofnonlinear
generalizations of diffusion and Fokker-Planck equatio
@1,8–10#, as a model of correlated anomalous diffusio
Some of those studies were based in a nonextensive the
dynamical formalism@11#. Particularly in Ref.@10# exact
solutions for the nonlinear Fokker-Planck equation subjec
a linear force have been found. Here we want to show h
these solutions can be extended to the case where an ab
tion process is also present.

We start recalling the ‘‘full’’ anomalous diffusion equa
tion or ‘‘nonlinear’’ Fokker-Planck equation solved in Re
@10#,

]

]t
@p~x,t !#m52

]

]x
$F~x!@p~x,t !#m%1D

]2

]x2 @p~x,t !#n.

~1!

When F(x)50, Eq. ~1! can be interpreted as a diffusio
equation forF(x,t)5@p(x,t)#m, where the diffusivity de-
pends onF,

]

]t
F5

]2

]x2@D~F!F#, ~2!
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D~F!5F (n/m)21. ~3!

There are several real situations where this power-law dep
dence of the diffusivity is found. It occurs in the flow o
gases through porous media (n/m>2 @12#!, the flow of water
in unsaturated soils (n/m55 @13#!, the simultaneous diffu-
sion and adsorption in porous samples where the adsorp
isotherm is of power-law type@14# (n/m>1 for Freundlich
type of adsorption isotherm@14,15#!. Clearly, in those cases
the diffusivity vanishes~diverges! for F50 whenn/m.1
(n/m,1). It is worth remembering that Eq.~1! corresponds
to the so called ‘‘porous media equation’’ whenm51 @9,16#.
There are a large number of situations where the interes
describing anomalous diffusion plus absorption are of r
evance. Notably, it is those related to the diffusion of so
~reactive! substance in a gaseous phase through a po
media or a membrane, that react and can be adsorbed in
inside the pore@17#.

Our interest here is to solve the same Eq.~1! but including
now terms that describe some kind of absorption process
general form of such an equation is

]

]t
@p~x,t !#m52

]

]x
$F~x!@p~x,t !#m%

1D
]2

]x2 @p~x,t !#n2a@p~x,t !#m8, ~4!

wherea plays the role of an absorption rate~and becomes
the usual one form85m). The presence of reaction term
like the one in Eq.~4! ~with aÞ0 andm8Þ0) is not at all
unexpected considering the large amount of work on
problematic of diffusion-limited reactions. Among the dive
sity of systems that have been studied we only recall here
so-called one species coagulation, that is:A1A→0 or mA
→ lA ~with m. l ), that have been associated, among othe
with catalytic processes in regular, heterogeneous, or di
dered systems@18#. The reaction term may account, in th
casem5m8, for an irreversible first-order reaction of th
transported substance so that the rate of removal isaC @14#.
This extra term also appears when a tracer undergoing ra
active decay is transported through a porous medium, wh

/
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1418 PRE 61DRAZER, WIO, AND TSALLIS
a is the reciprocal of the tracer’s mean lifetime@19#, as well
as in heat flow involving heat production at a rate that i
linear function of the temperature@20#. Finally, in solute
transport through adsorbent samples the adsorption rat
small solute concentration, is usually proportional to the c
centration in solution and Eq.~4! applies.

In @10# it has been shown thatpq(x,t), the solution of Eq.
~1!, for a linear forceF(x) has the form

pq~x,t !5
$12b~ t !~12q!@x2xM~ t !#2%1/(12q)

Zq~ t !
, ~5!

whereq511m2n, b(t) depends on the width of the dis
tribution,xM(t) is the average of the coordinate, andZq(t) is
a normalization factor. All of them depend on the diffusio
parameterD as well as onm,n and the force~see@10# for
details!.

For completeness, as well as for reference, we write
~1! without the ‘‘drift’’ F(x) as we will refer to the solutions
of such an equation in the following sections:

]

]t
@p~x,t !#m5D

]2

]x2 @p~x,t !#n. ~6!

According to the results from Ref.@10# we can write that the
solution pq

(0)(x,t) of Eq. ~6! has the form given in Eq.~5!,
with

xM~ t !5x0 ,

Zq~ t !5S 2n

m
~n1m!pDt D 1/n1m

,

~7!

b~ t !5pS 2n

m
~n1m!pDt D 2(2m/n1m)

,

where we have used the relationb(0)Zq(0)2m5p, that shall
be fulfilled if we want to have ad-like initial condition.

In the present work we intend to analyze the specific c
of a linear drift, namely,F(x)5k12k2x. This case, where
the potential is harmonic~a typical approximation!, is the
simple nontrivial one where analytic solutions can be o
tained just by means of changing the variables to suita
ones, namely, a simple extension of the well known Bo
mann transformation@21#.

In Sec. II we start considering the simple casem5m8. We
analyze first the case of constant external force (k250). In
this case we can first reduce Eq.~4! by proposing a solution
of the form

p~x,t !5e2(a/m)t p̂~x,t !, ~8!

that yields an equation forp̂(x,t) given by

]

]t
@ p̂~x,t !#m52

]

]x
$F~x!@ p̂~x,t !#m%

1Dea(12n/m)t
]2

]x2@ p̂~x,t !#n. ~9!

Although this reduction to anonlinearFokker-Planck equa
tion like in Eq. ~1! looks to always be possible~when k2
a

at
-

q.

e

-
le
-

50), for the case of a linear force~when k2Þ0) such a
reduction is not possible to make in a simple way and
will need a more general treatment.

The linear force situation, tightly related to the so call
Uhlenbeck-Ornstein process (k150;k2Þ0), is treated in
Sec. III, while in Sec. IV we discuss the most general ca
that is, whenmÞm8. In the last section we make some fin
remarks.

II. SOLUTION FOR A CONSTANT FORCE

As indicated above, here we consider the case of a c
stant force, that isF(x)5k1. Equation ~9! can be further
reduced making the following change of variablesj5x
2k1t, that results in

]

]t
@ p̂~j,t !#m5Dea(12n/m)t

]2

]j2@ p̂~j,t !#n. ~10!

Now we change the time variable according to

p̂~j,t !↔ p̂„j,z~ t !…⇒ ]

]t
5 ż~ t !

]

]z
, ~11!

z~ t !5E
0

t

ea(12n/m)tdt5
12e2gt

g
, t>0, ~12!

with g52a(m2n)/m, and obtain the following equation
valid for all t>0

]

]z
@ p̂~j,z!#m5D

]2

]j2 @ p̂~j,z!#n. ~13!

Hence, if pq
(0)(x,t) is the solution of Eq.~6!, the solution

with F(x)5k1 plus absorption results to be

pq~x,t !5e2
a
m tpq

(0)
„x2k1t,z~ t !…. ~14!

It is easy to check that this solution has the right limits f
a→0 and fora.0 andm5n51, i.e., the standard Fokker
Planck equation~plus absorption!.

The new variablez(t) plays the role of aneffective time
for the dispersion process. It exhibits markedly different b
haviors depending on the ratiom/n. The casem/n.1 (g
,0) corresponds tosuperdiffusivetransport when there is no
absorption@10#. When absorption is present thissuperdiffu-
sion is enhanced since the effective timez grows exponen-
tially as a function of the real timet.

In the casem/n,1 (g.0), which leads tosubdiffusion
for a50, the presence of absorption also plays a key ro
The effective timez(t) converges to an asymptotic valu
lim

t→`
z(t)5z`51/g. Therefore, the distributionpq

(0)(j,z)

evolves toward an asymptotic curvepq
(0)(j,z`). Let us note

that z` diverges whenevera→0 or m/n→1. In Fig. 1 we
compare, in them/n,1 case, the time evolution of the dis
tributions foraÞ0 anda50. We also compare these distr
butions with the shape of theaÞ0 asymptotic curve. For
completeness, we include in Fig. 2 the behavior ofz on t,
also illustrating its dependence onm/n. Finally in the case
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m5n ~normal diffusion1absorption for the quantity
F(x,t)5@p(x,t)#m) the change of variables becomes
simple time scaling.

As already mentioned, Eq.~4! can be viewed as a class
cal diffusion equation forF(x,t)5@p(x,t)#m, where the dif-
fusivity depends onF(x,t) through D(F)5DFn/m21.
Therefore, it becomes clear that the absorption can enh
~reduce! the diffusive transport wheneverm/n.1 (m/n
,1), namely, as absorption proceedsF decreases, yielding
to an increase or not inD(F) according to them/n ratio.
This qualitative description seems to be in complete ag
ment with the previous quantitative results.

III. SOLUTION FOR A LINEAR FORCE CASE

We now consider the case of a linear force, given
F(x)5k12k2x ~here and in what follows we assume th

FIG. 1. Evolution of the distributionpq
(0)(j,z(t)), as given in

Eq. ~14!, in the casem/n52/3,1. It is shown at timest
50.2, 2.5, and 5 fora50 anda51 (m51,n51.5,D51,k155,q
50.5). The dashed line corresponds to thea51 asymptotic distri-
bution shape.

FIG. 2. Time dependence of theeffective time zfor several
values ofg. It is apparent thatz(t) saturates at a finite value ast
→`(z`51/g) wheneverg.0. In the caseg50 the effective time
becomes equal to the real time:z5t. For g,0 the effective time
grows exponentially witht.
ce

e-

y

k2.0), whose general solution without absorption w
found in@10#. To start with, we assume thatm5m8. With the
hint of the change of variables made in the previous sec
we propose the following changes, that define the new v
ables

p~x,t !5e2wtp̂„j,z~ t !…, ~15!

j5xg~ t !1 f ~ t !, ~16!

with w,g(t) and f (t) to be determined. In terms of these ne
variables the time and space derivatives becomes

]

]t
5

]

]t
1„xġ~ t !1 ḟ ~ t !…

]

]j
1 ż~ t !

]

]z
, ~17!

]

]x
5g~ t !

]

]j
. ~18!

Taking into account these results and the form propo
for the solution@given by Eq.~15!#, each separate term o
Eq. ~4! becomes

]

]t
@p~x,t !#m52wme2wmt@ p̂~j,z!#m1e2wmt

„xġ~ t !

1 ḟ ~ t !…
]

]j
@ p̂~j,z!#m

1e2wmtż~ t !
]

]z
@ p̂~j,z!#m, ~19!

2
]

]x
$~k12k2x!@p~x,t !#m%

5k2@p~x,t !#m2~k12k2x!
]

]x
@p~x,t !#m

5e2wmtH k2@ p̂~j,z!#m2~k12k2x!g~ t !
]

]j
@ p̂~j,z!#mJ ,

~20!

D
]2

]x2 @p~x,t !#n5Dg2~ t !e2wnt
]2

]j2@ p̂~j,z!#n. ~21!

In this way, the equation we obtain forp̂(j,z) replacing into
Eq. ~4! with F(x)5k12k2x results ~after arranging terms
and multiplying byewmt)

ż~ t !
]

]z
@ p̂~j,z!#m5@wm1k22a#@ p̂~j,z!#m

2@~k12k2x!g~ t !1xġ~ t !1 ḟ ~ t !#
]

]j

3@ p̂~j,z!#m1Dg2~ t !ew(m2n)t
]2

]j2

3@ p̂~j,z!#n. ~22!
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1420 PRE 61DRAZER, WIO, AND TSALLIS
In order to reduce the last equation to one with a form si
lar to Eq. ~6!, we need to cancel the first two terms on t
rhs, and reduce the coefficient of the third one to a const
To operate with the second term, we shall cancel it for
values ofx. These conditions yield the following equation

05wm1k22a, ~23!

052k2g~ t !1ġ~ t !, ~24!

05k1g~ t !1 ḟ ~ t !, ~25!

15g2~ t !ew(m2n)tż~ t !21, ~26!

rendering

w5~2k21a!m21, ~27!

g~ t !5Gek2t, ~28!

f ~ t !5H2G
k1

k2
ek2t, ~29!

z~ t !2z~0!5G2$12e2gt%g21, ~30!

with g5@2k2(m1n)1a(n2m)#m21. In the general case
the values of the constants shall be chosen to fulfill so
particular initial condition. Here, to simplify, we chooseG
51, implying that we do not change thex scale att50.
Also, in order to make the change of space variables in s
a way to have it centered at the potential minimum@j85(x
2k1 /k2)# we adoptH50. Finally we choosez(0)50 to
preserve the time origin. With these values we have

j5S x2
k1

k2
Dek2t, ~31!

z~ t !5$12e2gt%g21, ~32!

and the solution of Eq.~4! with F(x)5k12k2x is

pq~x,t !5e[ ~k22a!/m] tpq
(0)~j,z!. ~33!

This is the final result for the present case (m5m8). It is
trivial to check its validity in some limits, the most obviou
one is to choosea50, recovering the solution of Ref.@10#.
With m5n51 andaÞ0 we recover the simple case of di
fusion in a harmonic potential with absorption. Also, if w
consider the casem5n andaÞ0, it is immediate to obtain
~remember thatm5n givesq51!)

p1~x,t !5e2a/mt
e2k2/2mD[x2(k1 /k2)2x0e2k2t] 2/~12e22k2t!

F2pmD

k2
~12e2k2t!G1/2m .

~34!

This result becomes obvious after making the cha
p1(x,t)m5f(x,t), reducing the problem to an effective on
of diffusion in a harmonic potential with absorption fo
f(x,t). Clearly, even though the solution has a Gauss
form ~times a decaying exponential term!, the width of the
i-

t.
ll

e

ch

e

n

Gaussian factor behaves ‘‘anomalously’’ as it differs fro
the one in the associated Ornstein-Uhlenbeck process@22#.

As in the constant-force case, absorption process m
edly influences the time evolution of dispersion. A straig
forward calculation yields the dispersion of the distributi
in the present case~i.e., m5m8)

^~x2^x&!2&5
1

b@z~ t !#
e22k2t. ~35!

In the superdiffusive case (m/n.1) b@z(t)# be-
comes asymptotically exponential, namely,b@z(t)#
} exp„22$@k2(m1n)1a(m2n)#/m1n%t…. Replacing this
result in Eq.~35! we obtain the long time behavior of th
dispersion

^~x2^x&!2&}e2a[(m2n)/(m1n)] t. ~36!

Therefore, thesuperdiffusivetransport enhanced by absor
tion yields an exponentially increasing dispersion even in
attractive potential. Thesubdiffusivecase (m/n,1) presents
two different situations. Although in both cases the disp
sion decays exponentially, when the absorption rate is sm
@g,0,a,k2(n1m)/(n2m)#, absorption is the rate control
ling process for dispersion

Š~x2^x&!2
‹}e22a[(n2m)/(n1m)] t. ~37!

In the other case, when the absorption rate is large (g.0),
the attractive force becomes rate limiting for dispersion p
cess

^~x2^x&!2&}e22k2t. ~38!

In order to compare the influence of the absorption te
on the solutions we have found, in Fig. 3 we depict t
solution given in Eq.~33!, in the casem/n.1 ~superdiffu-
sion!, for a50 and aÞ0 at different times. In Fig. 4 we
compare, in the subdiffusive case, the solution in Eq.~33!
when absorption is the rate limiting process for dispersion

FIG. 3. Evolution of the distributionpq
(0)@j,z(t)#, as given in

Eq. ~33!, in the casem/n52.1. It is shown at timest50.5, 0.8,
and 1.0 fora50 and a55 (m51,n50.5,D51,k150,k251.0,q
51.5). The dotted lines correspond to thea50 distribution, while
the solid lines correspond to thea55 case.
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PRE 61 1421ANOMALOUS DIFFUSION WITH ABSORPTION: EXACT . . .
the case when the attractive force controls dispersion. In b
figures the differences between the characteristics of the
ferent situations are apparent.

IV. GENERAL ABSORPTION TERM

In this section we consider Eq.~4!, in the general case
mÞm8. The following ‘‘simple’’ kinetic equation

]

]t
@p~ t !#m52a@p~ t !#m8, ~39!

whose solution is

p~ t !5S 12~12q8!
a

m
t D 2[1/(12q8)]

, ~40!

whereq8512m81m strongly indicates the replacement
the exponential in the change of variables in Eqs.~14! and
~15!, by theq8-exponentialfunction defined by Eq.~40! @23#.
The ordinary exponential function is recovered whenq8
→1. If we try this possibility, together with the Ansatz i
Eq. ~7!, it immediately leads to the conditionm5m8. This
result becomes apparent when analyzing Eq.~1! in terms of
F(x,t)5@p(x,t)#m. The form proposed in Eq.~8! allows us
to reduce the general equation, eliminating the absorp
term, only when absorption is proportional toF(x,t). How-
ever, the general case withmÞm8 will have a solution
whose scaling properties can be determined.

To find such scaling behavior it is enough to consider
simplified situation without external force, that is

]

]t
@p~x,t !#m5D

]2

]x2 @p~x,t !#n2a@p~x,t !#m8. ~41!

We consider the following Ansatz

p~x,t !5w~ t !Q~j!, ~42!

FIG. 4. Evolution ofpq
(0)@j,z(t)#, as given by Eq.~33!, in the

casem/n52/3,1. We show it at timest50.2, 1, and 5 fora
50.5 anda52.0 (m51,n51.5,D51,k150,k250.2,q50.5). The
dashed lines correspond to the casea50.5, where the attractive
force becomes dispersion rate limiting. The solid lines corresp
to a52.0, where absorption is the rate controlling process for d
persion.
th
if-

n

e

with j5c(t)x. Replacing this into Eq.~41!, we obtain the
functionsw(t) andc(t) as

w~ t !5@11~12q8!~a/m!t#2[1/~12q8)#, ~43!

c~ t !5@11~12q8!~a/m!t#21/2[m~82n!/(12q8)] , ~44!

whereq8512m81m. Hence, Eq.~41! for Q(j) reduces to
an ordinary differential equation on the variablej

Qm1Fm82n

2m Gj d

dj
Qm5D

d2

dj2 Qn1Qm8. ~45!

Once again, the previous results can be interpreted
terms of F(x,t). Writing the absorption term as
2(aFm8/m21)F, it can be seen that in the casem8,m the
absorption process is enhanced asF decreases with time
This leads to a finite timetc5m/a(m2m8), whereF be-
comes zero. On the other hand, whenm8.m we can obtain
the asymptotic dispersion, even though the ordinary diff
ential equation forQ(j), Eq. ~45!, is too complicated to be
solved analytically. However, for thenth moment of the dis-
tribution, we obtain

^x2n&5F E dxx2np~x,t !G Y F E dxp~x,t !G
5F E dxx2nw~ t !Q„c~ t !x…G Y F E dxw~ t !Q„c~ t !x…G
5c~ t !22nF E djj2nQ~j!G Y F E djQ~j!G
5c~ t !22nA2n , ~46!

^x2n11&50, ~47!

yielding

Š~x2^x&!2
‹5^x2&5c~ t !22A2;t [ ~m82n!/(12q8)]

5t (m82n/m82m). ~48!

Hence, it is clear that, as in the previous case (m85m),
m/n,1 corresponds to subdiffusion, whereas the casem/n
.1 corresponds to superdiffusive transport.

V. FINAL REMARKS

The Fokker-Planck equation that was generalized to
nonextensive scenario@8# has been further generalized to in
clude the possibility of an absorption process. We ha
shown that the exact solutions of Eq.~4! ~a nonlinear
Fokker-Planck equation subject to linear forces! found in
@10# when a50, can be extended for the caseaÞ0 and
m85m. However, in the general casem8Þm, we have been
only able to obtain the scaling properties of the soluti
~whose analytical form we cannot obtain!, and the
asymptotic behavior of the whole hierarchy of moments.

Summarizing our results for the nonlinear process
anomalous diffusion plus absorption, as described by Eq.~4!,
we have found that the solution~i! in a constant force field

d
-
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1422 PRE 61DRAZER, WIO, AND TSALLIS
and form/n.1 shows a superdiffusive behavior that isen-
hancedwhen aÞ0 (g,0); ~ii ! when g.0 (m/n,1) the
concentration reaches an asymptotic constant profile;~iii ! for
a linear force andg,0, we find an exponentially increasin
dispersion for superdiffusion;~iv! in the linear force case, a
exponentially decreasing dispersion arises for subdiffus
~g.0!, where absorption is the rate controlling process
dispersion when absorption rate is small@a,k2(n1m)/(n
2m)#, while the attractive force becomes the rate limiti
dispersion process when absorption is large enough@a
.k2(n1m)/(n2m)#.

The present results give further support to the argum
@10# that a generalized thermostatistics including nonext
sivity constitutes an adequate framework within which it
possible to unify both normal and correlated anomalous
fusion @10#, extended now to the case when an absorpt
process is also present. Also, as indicated in@9#, this kind of
work points out the convenience of paying more attention
the thermodynamic aspects of non-Fickian diffusion. Mo
s

tp:
le
/

us
n
r

nt
-

f-
n

o
-

over, it has been suggested@10# that even Levy-like anoma
lous diffusion@24# ~that can be discussed by means of line
Fokker-Planck equations with fractional derivatives! can be
included within the present common framework of nonline
Fokker-Planck equations with fractional derivatives.

This work also opens the possibility of analyzin
reaction-diffusion systems on a fractal substratum, by c
sidering the nonlinear Fokker-Planck equation with oth
forms of reaction terms. This problem will be the subject
further work.
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